Aborts vs Resets in Linear Temporal Logic

نویسندگان

  • Roy Armoni
  • Doron Bustan
  • Orna Kupferman
  • Moshe Y. Vardi
چکیده

There has been a major emphasis recently in the semiconductor industry on designing industrial-strength property specification languages (PSLs). Two major languages are ForSpec and Sugar 2.0, which are both extensions of Pnueli’s LTL. Both ForSpec and Sugar 2.0 directly support reset/abort signals, in which a check for a property ψ may be terminated and declared successful by an reset/abort signal, provided the check has not yet failed. ForSpec and Sugar 2.0, however, differ in their definition of failure. The definition of failure in ForSpec is syntactic, while the definition in Sugar 2.0 is semantic. In this work we examine the implications of this distinction between the two approaches, which we refer to as the reset approach (for ForSpec) and the abort approach (for Sugar 2.0). In order to focus on the reset/abort issue, we do not consider the full languages, which are quite rich, but rather the extensions of LTL with the reset/abort constructs. We show that the distinction between syntactic and semantic failure has a dramatic impact on the complexity of using the language in a model-checking tool. We prove that Reset-LTL enjoys the “fast-compilation property”: there is a linear translation of Reset-LTL formulas into alternating Büchi automata, which implies a linear translation of Reset-LTL formulas into a symbolic representation of nondeterministic Büchi automata. In contrast, the translation of Abort-LTL formulas into alternating Büchi automata is nonelementary (i.e., cannot be bounded by a stack of exponentials of a bounded height); each abort yields an exponential blow-up in the translation. This complexity bounds also apply to model checking; model checking Reset-LTL formulas is exponential in the size of the property, while model checking Abort-LTL formulas is nonelementary in the size of the property (the same bounds apply to satisfiability checking).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resets vs. Aborts in Linear Temporal Logic

There has been a major emphasis recently in the semiconductor industry on designing industrial-strength property specification languages. Two major languages are ForSpec and Sugar 2.0, which are both extensions of Pnueli’s LTL. Both ForSpec and Sugar 2.0 directly support reset/abort signals, in which a check for a property ψ may be terminated and declared successful by a reset/abort signal, pro...

متن کامل

Reasoning with Temporal Logic on Truncated Paths

We consider the problem of reasoning with linear temporal logic on truncated paths. A truncated path is a path which is finite, but not necessarily maximal. Truncated paths arise naturally in several areas, among which are incomplete verification methods (such as simulation or bounded model checking) and hardware resets. We present a formalism for reasoning about truncated paths, and analyze it...

متن کامل

Visibly Linear Dynamic Logic

We introduce Visibly Linear Dynamic Logic (VLDL), which extends Linear Temporal Logic (LTL) by temporal operators that are guarded by visibly pushdown languages over finite words. In VLDL one can, e.g., express that a function resets a variable to its original value after its execution, even in the presence of an unbounded number of intermediate recursive calls. We prove that VLDL describes exa...

متن کامل

Memory Event Clocks

We introduce logics and automata based on memory event clocks. A memory clock is not really reset: instead, a new clock is created, while the old one is still accessible by indexing. We can thus constrain not only the time since the last reset (which was the main limitation in event clocks), but also since previous resets. When we introduce these clocks in the linear temporal logic of the reals...

متن کامل

Büchi-Kamp Theorems for 1-clock ATA

This paper investigates Kamp-like and Büchi-like theorems for 1-clock Alternating Timed Automata (1-ATA) and its natural subclasses. A notion of 1-ATA with loop-free-resets is defined. This automaton class is shown to be expressively equivalent to the temporal logic RatMTL which is MTL[FI] extended with a regular expression guarded modality. Moreover, a subclass of future timed MSO with k-varia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002